Calculating bed load transport in steep boulder bed channels

نویسندگان

  • E. M. Yager
  • J. W. Kirchner
  • W. E. Dietrich
چکیده

[1] Steep, rough channels occupy a large fraction of the total channel length in mountainous regions. Most sediment mobilized on hillslopes must pass through these streams before reaching lower-gradient channels. Steep channels have wide grain size distributions that are composed of finer, more mobile sediment and large, rarely mobile grains. The large grains can bear a significant portion of the total shear stress and thereby reduce the stress available to move the finer sediment. Conventional bed load transport equations often overpredict the sediment flux in steep channels by several orders of magnitude. We hypothesize that sediment transport equations overpredict the sediment flux because they do not (1) account for the stress borne by rarely mobile grains, (2) differentiate between highly and rarely mobile sediment, and (3) account for the limited availability of mobile sediment. Here we modify a conventional bed load transport equation to include these three effects. We use measurements of the flow, bed properties, and sediment flux in a small, steep flume to test this equation. We supply gravel at a constant rate through fields of regularly spaced immobile spheres and measure the bed coverage by gravel and sphere protrusion (the percent of the sphere that protrudes above the gravel deposit). For a given sphere spacing, the proportion of the bed covered by gravel increases and the sphere protrusion decreases with greater sediment supply. Thus bed coverage and immobile grain protrusion may serve as proxies for sediment availability in steep, rough streams. Unlike most transport equations that we tested, our modified bed load equation predicts sediment fluxes to within an order of magnitude of the measured values. Our results demonstrate that accurately predicting bed load transport in steep, rough streams may require accounting for the effects of local sediment availability (coverage by mobile sediment) and drag due to rarely mobile particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sediment transport in steep channels with large roughness elements

Most sediment transport equations overestimate the bedload transport rate by several times when applied to mountain rivers. This is due to the fact that the presence of large relatively immobile boulders, which disrupt the flow, is generally not taken into account. Sediment transport in steep channels with boulders was herein investigated using 41 laboratory experiments carried out on a tilting...

متن کامل

A model for fluvial bedrock incision by impacting suspended and bed load sediment

[1] A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to...

متن کامل

Patch dynamics and stability in steep, rough streams

[1] The beds of steep streams are typically composed of relatively immobile boulders and more mobile patches of gravel and cobbles. Little is known about how variability in flow and sediment flux affect the area, thickness, composition, and grain mobility of sediment patches. To better understand patch dynamics, we measured flow, sediment transport, and bed properties in two steep channels. Pat...

متن کامل

Experimental analysis and numerical simulation of bed elevation change in mountain rivers

Studies of sediment transport problems in mountainous rivers with steep slopes are difficult due to rapid variations in flow regimes, abrupt changes in topography, etc. Sediment transport in mountainous rivers with steep slopes is a complicated subject because bed materials in mountainous rivers are often heterogeneous and contain a wide range of bed material sizes, such as gravel, cobbles, bou...

متن کامل

Formation of Stationary Alternate Bars in a Steep Channel with Mixed-size Sediment: a Flume Experiment

Alternate bars were formed by sediment transport in a flume with Froude-modelled flow and relative roughness characteristic of gravel-boulder channels with steep slopes. The flume (0.3 m wide x 7.5 m long) was filled with a sand-gravel mixture, which was also fed into the top of the flume at a constant rate under constant discharge. Channel slope was set at 0.03. Initially, coarse particles acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007